Following the autumn 2020 EPSRC panel meeting funding was confirmed for the UK-ARC network. The UK-ARC has now appointed a Network Manager, Roger Gardner to build its work and profile. Roger has experience working in aviation and aerospace research in academia, research organisations and industry and brings a background of familiarity with the UK-ARC membership, the research challenges and many of the stakeholders.

Roger said of his appointment ‘It is a privilege and pleasure to be helping this stellar group of aerospace universities to influence and support the UK research agenda for the benefit of industry. The UK-ARC can add real value by linking the many capabilities across its membership and providing a much simpler route for industry to secure the intellectual research horsepower it needs to bring innovation to market. Leveraging international connections, targeting research programmes to strategic need and strengthening the academic voice in national aviation discussions are key challenges for the network to grapple with going forward. I look forward to working across our wide community to achieve these aims.’

As it develops, the UK-ARC Network aims to become the coordinating voice of the academic research base to assist the UK Aerospace and Aviation industry: a portal to the wealth of research capability to innovate and to support UK ambitions to drive forward the emerging technologies that will shape a sustainable future for aviation.

Whatever the growth trajectory of aviation may be after the Coronavirus, the environmental drive to exploit electrification technology, new sustainable fuels and new aircraft concepts will tax industry and academic researchers globally. Add to that the rise of drone services, urban/rural air mobility and new sub-regional aircraft incorporating increasing degrees of electrification and autonomy, there is need for collaboration and clarity of vision as never before.

The UK-ARC network, facilitated by the network grant, will strengthen connectivity, co-creation of research delivered by UK-ARC members and partnering across a wide range of challenges. Beyond the core domain of aerospace technology design, test and demonstration, UK-ARC members work with Airlines, airports, fuel companies and air traffic service providers. The breadth of UK-ARC partners brings a holistic view to address system-level solutions that accelerate industrial product development.

The support from EPSRC enables the UK-ARC Network to:

  • support UK strategy development by refining and communications the academic view of research potential and priority. Clusters of excellence around a number of timely research themes (Alternative energy sources, More energy-efficient aircraft , Optimised flight operations and future airspace management, More sustainable manufacturing, Optimising ground operations, More sustainable through-life engineering services) are being developed. This will result in strategically aligned, high quality research proposals that will have a positive and significant impact on the sector’s environmental and industrial ambitions;
  • strengthen and expand research partnerships between UK-ARC, the Aerospace Technology Institute and other relevant national and international institutions;
  • launch a new international researcher placements programme between UK-ARC and international aerospace research bodies to create an international network of researchers. Early career researchers will be the catalysts for developing the networks and so establish long lasting cross institutional international relationships

Read more about the grant proposal and approval here https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/V009354/1

UK-ARC member Swansea University and Faradair Aerospace are to expand their relationship with the British company’s commitment to bring back large-scale aircraft production to the UK and deliver 300 home-designed, sustainable aircraft for regional air mobility and special missions by 2030.

The enhanced collaboration will see the University’s Bay Campus become a training ground for engineers and interns as Faradair develops new technologies for use on its clean-sheet Bio Electric Hybrid Aircraft (BEHA).

Neil Cloughley, Founder and CEO of Faradair, said. “Swansea has been part of this programme for four years now and we are delighted to reinforce our position in making Swansea a long-term partner of this world-leading aviation initiative, and thus Wales, a long-term partner in BEHA’s success. We plan to have 30 engineers based at the Bay Campus working on BEHA developments by the end of 2021 and there will be opportunities for undergraduate and postgraduate students also.”

Dr Ben Evans, Associate Professor in Aerospace Engineering at Swansea University, said: “The partnership we have established, providing aerodynamic design support to Faradair for their BEHA aircraft, is an exciting opportunity for Swansea University. It will allow us to use our world-leading aerodynamic modelling, high performance computing and design optimisation technologies on an aircraft set to transform the world of civil aviation.”

“The BEHA will be a clean and quiet aircraft for the 21st century that could have a major impact to help reduce greenhouse gas emissions from aviation whilst better connecting smaller, regional airfields across the UK and beyond. It also provides Swansea University’s students with an amazing chance to work alongside an innovative company and great graduate employment opportunities,” he added.

The partnering with Swansea University follows Faradair’s announcement in December that it had attracted a strong consortium of global partners for the BEHA*, an aircraft specifically designed for low cost, quiet, environmentally friendly flight – qualities that enable it to deliver Air Mobility as a Service (AMaaS) for all.

In line with UK Government ambitions for sustainable air transport, the British-designed and built BEHA will emerge in hybrid electric/ turbine configuration, but engineered for evolution into a fully electric net zero commercial aircraft when power generation technology delivers the power density levels required for an 18-seat utility aircraft.

The ambition is to deliver an initial portfolio of 300 Faradair-owned BEHAs between year 2026 and 2030. Of these, 150 aircraft will be built in firefighting configuration, 75 as quick change (QC, passenger to cargo) aircraft, deployed at general aviation airfields globally, and 50 as pure freighters. The final 25 aircraft will be demonstrated in non-civilian government roles, including logistics, border and fisheries patrol, and drug interdiction.

Talks are now advancing at pace with investors and aircraft finance organisations to enable the full programme of development to scale up and meet the target objectives.

Meanwhile, Faradair is building its executive and engineering team, and expects to make further announcements early in 2021.

Original article posted here.

The Aerospace Technology Institute (ATI), with support from the Department for Business, Energy and Industrial Strategy (BEIS), has launched the FlyZero project to determine the concept for a new low carbon aircraft to be introduced within a decade.

This work is a national effort that aims to define concepts to give the UK a lead in low-carbon aviation. It will inspire a number of larger research programmes providing academics with the opportunity to make a mark and bolster university innovation.

The UK Aerospace Research Consortium (UK-ARC) is the focus for academic engagement but there will be engagement beyond the 11 UK-ARC aerospace research-intensive universities.

The ATI are looking for academics to participate in the project and opened a secondment recruitment process in September to draw expertise into the core team (expected to be up to 100 people) to work through many conceptual aspects of the challenge.

Leading academics in relevant fields of expertise are encouraged to apply for these 12 month full-time posts.

The FlyZero project has also identified the need for an Academic Coordinator and this post will be advertised during September on the ATI FlyZero website.

Whilst the main concept development work will be undertaken within the FlyZero core team, it has been recognised that promising technologies are likely to need deep technology team analysis within separate academic teams along the lines of those previously stood up by DARPA in the US.

FlyZero represents an exciting opportunity for academia as this is lower TRL work where expertise within UK-ARC universities could have a real impact and spur new multi-year projects.

For more information about the project and the secondment roles please visit their website https://www.ati.org.uk/flyzero/ or contact Dr Adrian Cole via email A.C.Cole@cranfield.ac.uk.

Members of the UK Aerospace Research Consortium (UK-ARC) representing the UK’s leading aerospace research universities were pleased to support the Farnborough International Airshow Connect (“Virtual Farnborough”) programme.

During the five day event the members took part in a series of technical presentations, careers events and panel sessions showcasing the universities as being a key part of the UK’s aerospace research capability.

Some of the events during the week included;

  • “Aircraft Cabin of the Future” – a 360 VR video by Dr Tom Budd (Cranfield University)
  • “Careers in Digital Aviation” – Panel Session hosted by Prof Graham Braithwaite (Cranfield University) and including representatives from Boeing and Blue Bear Systems Research
  • “Women in Aviation and Aerospace Charter Panel Session –  How do we maintain the focus on diversity and inclusion as the industry recovers from COVID-19”

In addition to the above events UK-ARC members provided a full range of materials through the Farnborough website including; Technical insights, PhD research “snap shots” plus a variety of downloadable information.

UK-ARC continues to strive to serve the UK aerospace industry through world-leading research expertise and research infrastructure.  UK-ARC member universities also make a vital contribution to the aerospace skills supply chain by developing and supporting aerospace engineers key to the future of the UK’s aerospace sector.

The UK Aerospace Research Consortium brings together leading UK universities, acting collectively to facilitate high-level, strategic engagement with the UK aerospace sector on transformational aerospace research and coordinated access to the best of the UK research base. The UK-ARC members are:

The UK-ARC recently surveyed its members to assess the breadth and depth of multidisciplinary expertise and research activity which could be brought to bear to ensure a bio-safe flight environment should a future pandemic occur at some point in the future.

Nearly 60 areas of relevant expertise and research activity were identified such as the development of anti-viral surfaces using a myriad of strategies; sensor development for virus detection; advanced computational modelling, data analytics and artificial intelligence to track the spread of pathogens; new techniques for passenger tracking and monitoring safe distances; future bio-safe cabin concepts; rapid disinfection strategies, cyber and hardware security and agile, and rapid manufacturing strategies for sudden high demand PPE and medical equipment provision.

By adopting a whole system approach to this challenge, other areas of expertise offered by the consortium include policy development for workforce protection and safe operating practices, labour laws, mitigation strategies for workplace stress, mental health, and behavioural science.

For further details please contact enquiries@ukarc.ac.uk

 

Researchers at Imperial College London are supporting the design of solar-powered high-altitude pseudosatellites. A major challenge is the prediction of the dynamics of vehicles near the ground, which currently puts severe constraints on their take-off and landing windows.

Read more

The MAGMA project is a collaboration between the University of Manchester and BAE Systems with the goal of developing and demonstrating novel flight control effectors for aircraft. The project recently achieved an aerospace first in completing a fully controlled circuit using fluidic controls only (no moving surfaces).

Bill Crowther, senior academic and leader of the MAGMA project at the University of Manchester, said: “We are excited to have been part of a long-standing effort to change the way in which aircraft can be controlled, going all the way back to the invention of wing warping by the Wright brothers. It has been a great project for students to be part of, highlighting that real innovation in engineering is more about finding practical solutions to many hundreds of small technical challenges than having single moments of inspiration. The partnership with BAE Systems has allowed us the freedom as a university to focus on research adventure, with BAE providing the pathway to industrial application.

“We made our first fluidic thrust vectoring nozzle from glued together bits of plastic and tested it on a hair drier fan nearly 20 years ago. Today, BAE is 3D printing our components out of titanium and we are flight testing them on the back of a jet engine in an aircraft designed and built by the project team. It doesn’t get much better than that.”

Watch a video of conventional controlled MAGMA variant flight trials and fluidic MAGMA variant flight trials

Thales and Vodafone have joined the National Beyond visual line of sight Experimentation Corridor (NBEC) partnership alongside founding partners Cranfield University and Blue Bear Research Systems. The addition of these two global industry leaders is a significant boost to the capabilities of NBEC, as the corridor continues to be developed.

The project is closely aligned to the Aerospace Sector Deal, a Government initiative to drive industry collaboration to support the future of mobility in the British economy. It will examine the real-world impact of digital transformation to jointly develop and exploit innovations within and between digitised airline operations, aircraft, airspace management and airports that are already in play.

Building on the existing partnership between Thales and the Digital Aviation Research and Technology Centre (DARTeC), based at Cranfield University, Thales is committed to unlocking the potential of digital aviation in the UK and globally. The NBEC partnership brings to life Thales’ efforts to safely and securely integrate unmanned systems into UK airspace by integrating the airspace situation into the software solution devised for NBEC.

The NBEC flight corridor will be used to demonstrate how 4G and 5G mobile technology can be used to identify and track the location of a drone in real time, which is vital to ensure that autonomous ‘beyond line of sight’ flights are safe. This will complement existing satellite-based location systems, which provide accurate location estimates but can be open to jamming and compromise. Mobile connectivity on a drone will provide a secondary feed of location-based information, enabling a more robust and trusted picture of the drone’s location. Such capabilities will be key to the air traffic management systems required to allow the routine and safe flying of commercial drones in the future.

Blue Bear and Cranfield recently completed the first test flights to establish the principles for the National Beyond Visual Line of Sight Experimentation Corridor (NBEC) at Cranfield Airport. The ultimate aim is to see the corridor eventually stretch across Bedfordshire from Blue Bear’s headquarters in Oakley to Cranfield University’s airport.

Steve Murray, VP Strategy and Marketing, Thales UK, said: “Our solutions will help to build the foundations for an entirely new air transport system, based on clean, electric and hybrid air vehicles. For example, this will enable the routine, safe and secure use of drones for infrastructure surveillance and inspection, logistics delivery services and a future in which urban air mobility is a reality. Digital Trust is at the core of all we do and our role in the project will contribute significantly in the areas of cyber security and the concept of centralised management for drone operations and UAV traffic management to ensure the safety and security of the airspace.”

Anne Sheehan, Director, Vodafone Business UK, said: “Drones offer exciting opportunities for the future and will ultimately bring benefits to society and the economy. However, we need to make sure they are used safely and responsibly. We are delighted to bring our mobile connectivity expertise to the NBEC consortium so that drone technology can be further tested and developed.”

Professor Iain Gray, Director of Aerospace at Cranfield University, said: “With the addition of two global industry leaders, Thales and Vodafone, this is a significant boost to our capabilities as we develop NBEC. Upon its completion, NBEC will be a national asset that will help unlock the potential of a modernised UK airspace.”

Ian Williams-Wynn, MD of Blue Bear, said: “The creation of NBEC allows new technologies to be integrated and tested together to accelerate leading edge research and create a blueprint for UK drone activities. Expanding the consortium with these key industry leading technology providers will increase NBEC capability, and accelerate the expansion of NBEC to become the place to test drones in the UK”.